我们研究了以模型为简单络合物的抽象拓扑空间支撑的处理信号的线性过滤器,可以解释为解释节点,边缘,三角形面的图形的概括等,以处理此类信号,我们开发了定义为Matrix polynomials的简单卷积过滤器下霍德·拉普拉斯人的下部和上部。首先,我们研究了这些过滤器的特性,并表明它们是线性和转移不变的,以及置换和定向等效的。这些过滤器也可以以低计算复杂性的分布式方式实现,因为它们仅涉及(多个回合)上层和下相邻简单之间的简单转移。其次,着眼于边缘流,我们研究了这些过滤器的频率响应,并研究了如何使用Hodge分类来描述梯度,卷曲和谐波频率。我们讨论了这些频率如何对应于霍德拉普拉斯(Hodge laplacian)的下部和上等耦合以及上的核心,并且可以通过我们的滤波器设计独立调整。第三,我们研究设计简单卷积过滤器并讨论其相对优势的不同程序。最后,我们在几种应用中证实了简单过滤器:提取简单信号的不同频率组件,以denoise边缘流量以及分析金融市场和交通网络。
translated by 谷歌翻译
在现代高度互连的电网中,自动生成控制(AGC)对于保持电网的稳定性至关重要。 AGC系统对信息和通信技术(ICT)系统的依赖性使其容易受到各种类型的网络攻击。因此,信息流(IF)分析和异常检测成为防止网络攻击者将网络物理功率系统(CPP)推向不稳定性的至关重要。在本文中,探索了CPPS中的ICT网络流量规则,并提取了ICT网络流量的频域特征,基本上是用于开发可靠的学习算法,该算法可以基于Resnest卷积神经网络(CNN)学习正常的流量模式。 。此外,为了克服不充分标记样品的异常流量的问题,使用了转移学习方法。在提出的基于数据驱动的方法中,深度学习模型是通过交通频率特征训练的,这使我们的模型与AGC的参数不确定性和建模非线性训练。
translated by 谷歌翻译
在带有电动车队的乘车系统中,充电是一个复杂的决策过程。大多数电动汽车(EV)出租车服务要求驾驶员做出利己主义决定,从而导致分散的临时充电策略。车辆之间通常缺乏或不共享移动性系统的当前状态,因此无法做出最佳的决定。大多数现有方法都不将时间,位置和持续时间结合到全面的控制算法中,也不适合实时操作。因此,我们提出了一种实时预测性充电方法,用于使用一个名为“闲置时间开发(ITX)”的单个操作员进行乘车服务,该方法预测了车辆闲置并利用这些时期来收获能量的时期。它依靠图形卷积网络和线性分配算法来设计最佳的车辆和充电站配对,以最大程度地提高利用的空闲时间。我们通过对纽约市现实世界数据集的广泛模拟研究评估了我们的方法。结果表明,就货币奖励功能而言,ITX的表现优于所有基线方法至少提高5%(相当于6,000个车辆操作的$ 70,000),该奖励奖励功能的建模旨在复制现实世界中乘车系统的盈利能力。此外,与基线方法相比,ITX可以将延迟至少减少4.68%,并且通常通过促进顾客在整个车队中更好地传播乘客的舒适度。我们的结果还表明,ITX使车辆能够在白天收获能量,稳定电池水平,并增加需求意外激增的弹性。最后,与表现最佳的基线策略相比,峰值负载减少了17.39%,这使网格操作员受益,并为更可持续的电网使用铺平了道路。
translated by 谷歌翻译
有效的点云压缩对于虚拟和混合现实,自动驾驶和文化遗产等应用至关重要。在本文中,我们为动态点云几何压缩提出了一个基于深度学习的框架间编码方案。我们提出了一种有损的几何压缩方案,该方案通过使用新的预测网络,使用先前的框架来预测当前帧的潜在表示。我们提出的网络利用稀疏的卷积使用层次多尺度3D功能学习来使用上一个帧编码当前帧。我们在目标坐标上采用卷积来将上一个帧的潜在表示为当前帧的降采样坐标,以预测当前帧的特征嵌入。我们的框架通过使用学习的概率分解熵模型来压缩预测功能的残差和实际特征。在接收器中,解码器层次结构通过逐步重新嵌入功能嵌入来重建当前框架。我们将我们的模型与基于最先进的视频点云压缩(V-PCC)和基于几何的点云压缩(G-PCC)方案进行了比较,该方案由Moving Picture Experts Group(MPEG)标准化。我们的方法实现了91%以上的BD率Bjontegaard三角洲率)降低了G-PCC,针对V-PCC框架内编码模式的BD率降低了62%以上,而对于V-PC。使用HEVC,基于PCC P框架的框架间编码模式。
translated by 谷歌翻译
最近,大型高质量的公共数据集导致了卷积神经网络的发展,这些神经网络可以在专家病理学家水平上检测乳腺癌的淋巴结转移。许多癌症,无论起源地点如何,都可以转移到淋巴结。但是,收集和注释每种癌症类型的高量,高质量数据集都是具有挑战性的。在本文中,我们研究了如何在多任务设置中最有效地利用现有的高质量数据集,以实现紧密相关的任务。具体而言,我们将探索不同的训练和领域适应策略,包括预防灾难性遗忘,用于结肠和头颈癌症转移淋巴结中的灾难性遗忘。我们的结果表明,两项癌症转移检测任务的最新性能。此外,我们显示了从一种癌症类型到另一种癌症的反复适应以获得多任务转移检测网络的有效性。最后,我们表明,利用现有的高质量数据集可以显着提高新目标任务的性能,并且可以使用正则化有效地减轻灾难性遗忘。
translated by 谷歌翻译
自动生物医学图像分析的领域至关重要地取决于算法验证的可靠和有意义的性能指标。但是,当前的度量使用通常是不明智的,并且不能反映基本的域名。在这里,我们提出了一个全面的框架,该框架指导研究人员以问题意识的方式选择绩效指标。具体而言,我们专注于生物医学图像分析问题,这些问题可以解释为图像,对象或像素级别的分类任务。该框架首先编译域兴趣 - 目标结构 - ,数据集和算法与输出问题相关的属性的属性与问题指纹相关,同时还将其映射到适当的问题类别,即图像级分类,语义分段,实例,实例细分或对象检测。然后,它指导用户选择和应用一组适当的验证指标的过程,同时使他们意识到与个人选择相关的潜在陷阱。在本文中,我们描述了指标重新加载推荐框架的当前状态,目的是从图像分析社区获得建设性的反馈。当前版本是在由60多个图像分析专家的国际联盟中开发的,将在社区驱动的优化之后公开作为用户友好的工具包提供。
translated by 谷歌翻译
放射线学使用定量医学成像特征来预测临床结果。目前,在新的临床应用中,必须通过启发式试验和纠正过程手动完成各种可用选项的最佳放射组方法。在这项研究中,我们提出了一个框架,以自动优化每个应用程序的放射线工作流程的构建。为此,我们将放射线学作为模块化工作流程,并为每个组件包含大量的常见算法。为了优化每个应用程序的工作流程,我们使用随机搜索和结合使用自动化机器学习。我们在十二个不同的临床应用中评估我们的方法,从而在曲线下导致以下区域:1)脂肪肉瘤(0.83); 2)脱粘型纤维瘤病(0.82); 3)原发性肝肿瘤(0.80); 4)胃肠道肿瘤(0.77); 5)结直肠肝转移(0.61); 6)黑色素瘤转移(0.45); 7)肝细胞癌(0.75); 8)肠系膜纤维化(0.80); 9)前列腺癌(0.72); 10)神经胶质瘤(0.71); 11)阿尔茨海默氏病(0.87);和12)头颈癌(0.84)。我们表明,我们的框架具有比较人类专家的竞争性能,优于放射线基线,并且表现相似或优于贝叶斯优化和更高级的合奏方法。最后,我们的方法完全自动优化了放射线工作流的构建,从而简化了在新应用程序中对放射线生物标志物的搜索。为了促进可重复性和未来的研究,我们公开发布了六个数据集,框架的软件实施以及重现这项研究的代码。
translated by 谷歌翻译
尽管自动图像分析的重要性不断增加,但最近的元研究揭示了有关算法验证的主要缺陷。性能指标对于使用的自动算法的有意义,客观和透明的性能评估和验证尤其是关键,但是在使用特定的指标进行给定的图像分析任务时,对实际陷阱的关注相对较少。这些通常与(1)无视固有的度量属性,例如在存在类不平衡或小目标结构的情况下的行为,(2)无视固有的数据集属性,例如测试的非独立性案例和(3)无视指标应反映的实际生物医学领域的兴趣。该动态文档的目的是说明图像分析领域通常应用的性能指标的重要局限性。在这种情况下,它重点介绍了可以用作图像级分类,语义分割,实例分割或对象检测任务的生物医学图像分析问题。当前版本是基于由全球60多家机构的国际图像分析专家进行的关于指标的Delphi流程。
translated by 谷歌翻译
Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
translated by 谷歌翻译